3．コンクリート混和材

フライアッシュは，その特長を活かしコンクリート混和材として多方面に利用されています。 その工法として次のようなものがあります。

－RCD工法（Roller Compacted Dam－Concrete）

貧配合超硬練りのコンクリートをローラーで転圧締固めを行う新システムのダムコンクリートの施工方法で，工費の節減と工期の短縮が図れると同時に，安全性•環境対策の面でもすぐれている等の特長があり，ダム建設に実績をあげています。

－高流動コンクリート工法

高流動コンクリートは，超流動コンクリート䋨固め不要コンクリートなどと呼ばれ，多方面で使用されています。
このコンクリートは，作業の熟練度にかかわら ず信頼性の高いコンクリート構造物を構築するこ とを目的として開発されているもので，自己充填性を有し，締固め不要な施工性に優れたコンクリ

ローラー転圧•縍固めの施工方法はダム建設に限らず，道路蜅装工事にも用いられておうり，これ はRCCP（Roller Compacted Concrete Pavement） と呼ばれています。

ートです。
フライアッシュをコンクリートの混和材として使用すると，セメントの水和発熱の低減，流動性 の向上，コンクリートの単位水量の低減，セメン トの水和反応後のポゾラン反応の発揮などの働き をする特性をもっています。このため高流動コン クリートに使用した場合，その特性を大いに発揮 しています。

グラウト工法

岩盤の割れ目，特殊地盤，㯌道の裏込め，構造物下，路盤下，ダム継手，PC鋼材周辺，アンカー ボルト周辺等へフライアッシュ混合セメントペー ストまたはフライアッシュ混合モルタルを圧入し て補強します。
フライアッシュを主体にしたスラリーモルタル の性能は，石灰石粉や良質の粘土等を用いた場合 と匹敵することが認められ，広く使用されています。
また，フライアッシュの微粒のものは，その効果がいっそう評価されています。

－吹付けコンクリート工法
吹付けコンクリートは，トンネルや地下構造物等の支保部材・ライニング材として使用されてお り，このような構造物の築造にはなくてはならな い材料となっています。
フライアッシュを吹付けコンクリートの混和材 として使用すると，コンクリートの粘性が適度に増加して，吹付け時の粉塵が低減するとともには ね返り量が少なくなることから，作業現場の環境改善と効率的な施工が可能となります。又，コン クリートの強度の増加と耐久性の向上が得られ，信頼性の高い支保工を構築することができます。

○プレパクトコンクリート工法

あらかじめ粗骨材だけを型枠内または施工力所 に投入し，その間隙にモルタルを注入して行うコ ンクリート工法で，一般にフライアッシュが25～ 50% 使用されています。
本四連絡橋（瀬戸大橋）の下部工で，海中基礎が本工法で施工されているほか，放射線遮蔽用重量 コンクリート，補修•補強用コンクリート等，そ の種類，重要性，規模の大きさなど使用は多岐に わたっています。

> 混 和 材 料 コンクリートなどに特別の性質を与えるために, 加えられるセメント, 水, 骨材以外の材料です。

骨 材 モルタル又はコンクリートを作るために セメント及び水と混ぜる砂，砂利，その他，これに類似の粒状の材料です。

混 和 材 混和材料のうちで，使用量が比較的多く てコンクリートなどの配合計算に関係す るものです。

コンクリート セメントに水，細骨材及び粗骨材，場合 によっては混和材料を加えて練り混ぜた ものです。

